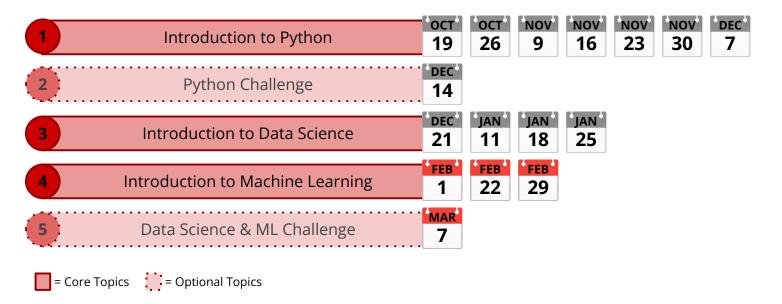
Python for Data Science and Machine Learning

School Year 2023-2024

IST

Course Structure



Jupyter Notebook Setup

In a browser:

192.168.10.4:8888

Password: ist

Recap: Pandas & other Libraries

Pandas is a powerful Python data analysis toolkit.

Matplotlib & Seaborn are plotting libraries.

13.0

```
import pandas as pd
import numpy as np
```

I have added two functions (plot_2d & plot_3d) that will help plotting charts in future exercises

Recap: DataFrame

A **DataFrame** is a two-dimensional data structure with labeled axes (rows and columns).

13.1

```
df = pd.read_csv("titanic_dataset.csv")
df
```


Recap: DataFrame

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 rd	ows × 12 colun	nns										

Test & Training Data

The titanic **dataset** is split in two:

- Train data (to build our Data Science/Machine Learning Models)
- 2. **Test data** (to evaluate our DS/ML Models)

```
13.2
```

```
test_df = pd.read_csv("test_dataset.csv")
(len(df), len(test_df))
```


Recap: Indexing, Grouping & Analysis

When using them all together, in order we:

- 1. First use boolean indexing
- 2. Secondly use grouping
- 3. Finally we select the analysis function we'd like

```
df[df["Age"] < 18].groupby("Pclass")["Survived"].count()</pre>
```

Indexing

Grouping

Data Analysis

Exploratory Data Analysis (EDA)

Before we dive into Machine Learning: EDA!

Exploratory Data Analysis refers to the critical process of performing initial **investigations on data** so as to discover **patterns**, to spot **anomalies**, to test hypothesis and to check **assumptions**.

Pratil, Prasad. (2018). "What is Exploratory Data Analysis?" Towards Data Science.

Available at: https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15.

Feature Engineering

Feature engineering or feature extraction or feature discovery is the process of extracting features (characteristics, properties, attributes) from raw data to support training a downstream statistical model.

Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2009).

The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. ISBN 978-0-387-84884-6.

Analysing the "Embarked" Column

We can see that not all passengers have data regarding their embarkation point:

13.3.1

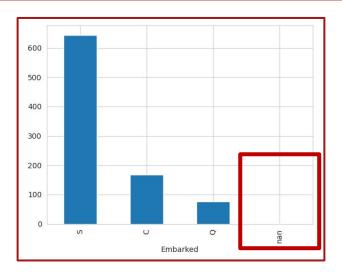
df[pd.isna(df["Embarked"])]

Analysing the "Embarked" Column

To visualise the current value distribution:

13.3.2

df['Embarked'].value counts(dropna=False).plot(kind='bar')



Analysing the "Embarked" Column

Exercise 13.3.3: What value do we pick as default for rows missing data:

13.3.3 df['Embarked'] = df['Embarked'].fillna(value=_____

Verify that the value was set correctly by running cell 13.3.4


```
df['Embarked'] = df['Embarked'].fillna(value='S')
```


We can see that not all passengers have data on their age:

13.4.1

df[pd.isna(df["Age"])]

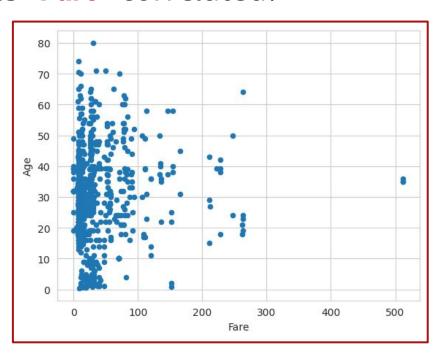
P	assengerId	Survived	Pclass	Name	Sex	Age	ibSp	Parch	Ticket	Fare	Cabin	Embarked
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	C
26	27	0	3	Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.2250	NaN	C
28	29	1	3	O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.8792	NaN	Q

359	860	0	3	Razi, Mr. Raihed	male	NaN	0	0	2629	7.2292	NaN	C
363	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.5500	NaN	S
368	869	0	3	van Melkebeke, Mr. Philemon	male	NaN	0	0	345777	9.5000	NaN	S
378	879	0	3	Laleff, Mr. Kristo	male	NaN	0	0	349217	7.8958	NaN	S
388	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1.	2	W./C. 6607	23.4500	NaN	S

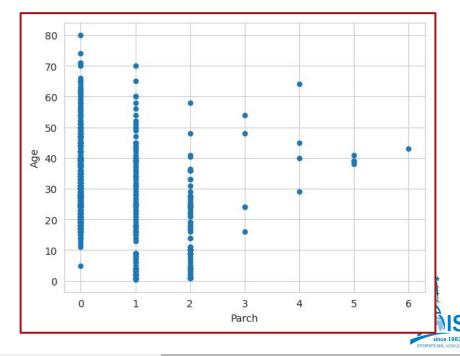
Exercise 13.4.2: Let's use a scatter plot to graphically determine which columns are correlated with "Age".

Try multiple columns which ones seem to have most graphic correlation?

Is "Fare" correlated?

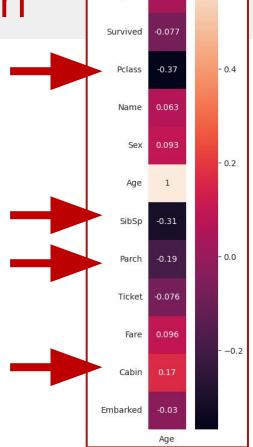


Is "Parch" correlated?



We can actually view the correlations across all columns in the dataframe:

13.4.3



PassengerId

0.037

Let's visualise how Pclass and

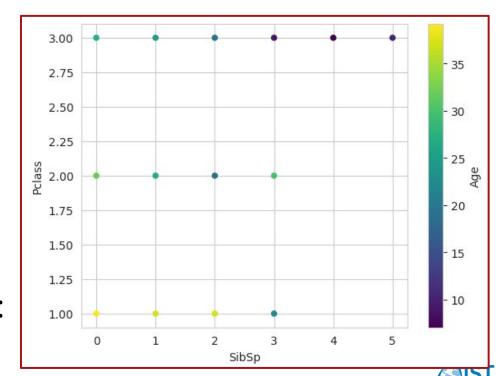
SibSp changes affect the

average Age value:

13.4.4

You can see the raw numbers:

13.4.5



We can therefore set the missing values to match the mean

of the corresponding **Pclass** and **Parch** column values:

But did we miss some rows? How?

13.4.7

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
159	160	0	3	Sage, Master. Thomas Henry	male	NaN	8	2	CA. 2343	69.55	NaN	S
180	181	0	3	Sage, Miss. Constance Gladys	female	NaN	8	2	CA. 2343	69.55	NaN	S
201	202	0	3	Sage, Mr. Frederick	male	NaN	8	2	CA. 2343	69.55	NaN	S
324	325	0	3	Sage, Mr. George John Jr	male	NaN	8	2	CA. 2343	69.55	NaN	S
792	793	0	3	Sage, Miss. Stella Anna	female	NaN	8	2	CA. 2343	69.55	NaN	S
846	847	0	3	Sage, Mr. Douglas Bullen	male	NaN	8	2	CA. 2343	69.55	NaN	S
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.55	NaN	5

Exercise 13.4.8: We need to use the table we constructed in exercise **13.4.5** to pick a sensible default for these missing rows:

13.4.8 df['Age'] = df['Age'].fillna(value=_____)

Verify that the value was set correctly by running cell 13.4.9


```
df['Age'] = df['Age'].fillna(value=10.2)
```

```
df.groupby(['SibSp', 'Pclass'])['Age'].mean()
SibSp
      Pclass
                 39.181416
                 31.934220
                 27.630201
                 37,414154
                 27.363636
                 24.912698
                 37.200000
                 19.125000
                 18.875000
                 22.000000
                 30.000000
                  8.875000
                  7.055556
                 10.200000
                       NaN
Name: Age, dtype: float64
```


School Year 2023-2024

Categorization

Data Science does **not** work well with strings.

Categorization is the act of mapping strings to ints/floats.

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	CatSex	CatEmbarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	NaN	S	0	O
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833	C85	c	1	1
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	NaN	s	1	C
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)		35.000000	1	0	113803	53.1000	C123	s	1	
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500	NaN	S	0	
	***		***	····	•••	***		***			***			
86	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0	211536	13.0000	NaN	S	0	
87	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0	112053	30.0000	B42	S	1	
88	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	24.912698	1	2	W./C. 6607	23.4500	NaN	s	1	
89	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	111369	30.0000	C148	С	0	
90	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0	370376	7,7500	NaN	Q	0	

13.5.1

```
df["CatSex"] = df["Sex"].map({"male": 0, "female": 1})
df["CatEmbarked"] = df["Embarked"].map({"S": 0, "C": 1, "Q": 2})
```

Categorization

We have too many different Ages, we map them into buckets.

Exercise 13.5.2: We wish to have 5-year buckets, how many buckets do we need?

13.5.2

```
array([ 0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 50., 55., 60., 65., 70., 75., 80.])
```



```
age_buckets = np.linspace(0, 80, 17)
```

```
array([ 0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 50., 55., 60., 65., 70., 75., 80.])
```


Categorization

Let's apply our categorization to the **Age** column values, by

creating a new column CatAge: 13.5.3

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	CatSex	CatEmbarked	CatAge
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	NaN	S	0	0	4
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833	C85	С	1	1	7
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	NaN	S	1	0	5
3	4	11	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0	113803	53.1000	C123	S	1	0	6
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500	NaN	S	0	0	6

Categorization

We have too many different **Fares**, we map them into buckets.

Exercise 13.5.4: We wish to have 10-dollar buckets, how many buckets do we need?

13.5.4

```
fare_buckets = np.linspace(0, 520, _____)
```

```
array([ 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 210., 220., 230., 240., 250., 260., 270., 280., 290., 300., 310., 320., 330., 340., 350., 360., 370., 380., 390., 400., 410., 420., 430., 440., 450., 460., 470., 480., 490., 500., 510., 520.])
```



```
fare_buckets = np.linspace(0, 520, 53)
```

```
array([ 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 210., 220., 230., 240., 250., 260., 270., 280., 290., 300., 310., 320., 330., 340., 350., 360., 370., 380., 390., 400., 410., 420., 430., 440., 450., 460., 470., 480., 490., 500., 510., 520.])
```


Categorization

Let's apply our categorization to the Fare column values, by

creating a new column CatFare: 13.5.5

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	CatSex	CatEmbarked	CatAge	CatFare
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	NaN	S	0	0	4	0.0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833	C85	c	1	1	7	7.0
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	NaN	S	1	0	5	0.0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1,	0	113803	53.1000	C123	S	1	0	6	5.0

School Year 2023-2024

Let's remove all columns we no longer need from the old

dataset:

13.6.1

All of these columns have been categorized!

	Survived	Pclass	SibSp	Parch	CatSex	CatEmbarked	CatAge	CatFare
0	0	3	1	0	0	0	4	0.0
1	1	1	1	0	1	1	7	7.0
2	1	3	0	0	1	0	5	0.0
3	1	1	1	0	1	0	6	5.0
4	0	3	0	0	0	0	6	0.0
	***	***	***		***			
886	0	2	0	0	0	0	5	1.0
887	1	1	0	0	1	0	3	2.0
888	0	3	1	2	1	0	4	2.0
889	1	1	0	0	0	1	5	2.0
890	0	3	0	0	0	2	6	0.0

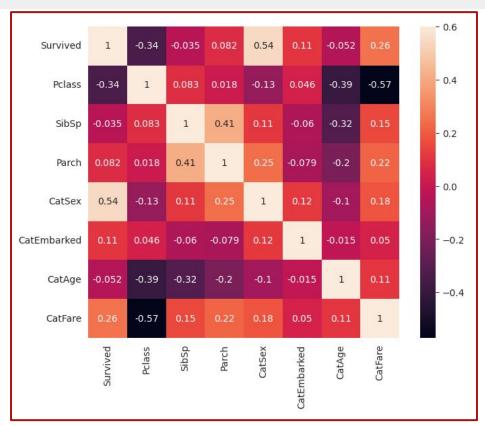
Understanding how **features relate to each other** is key in **prediction**.

We'll use **heatmaps** and custom plots to **visualize correlations** and interactions between variables.

Let's see how our categorized columns correlate to the

survival of passengers:

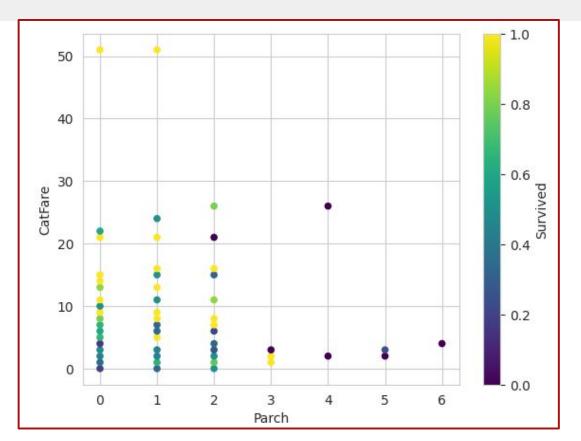
13.6.2

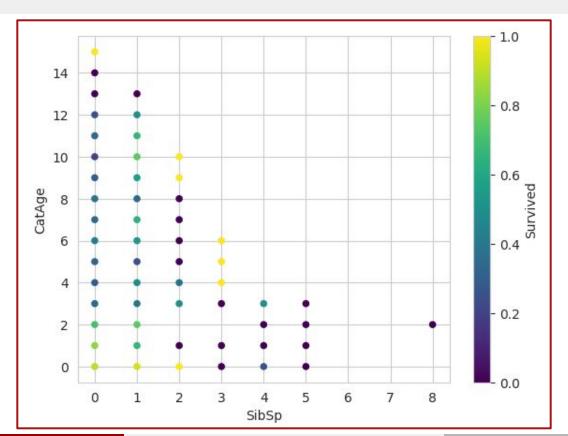


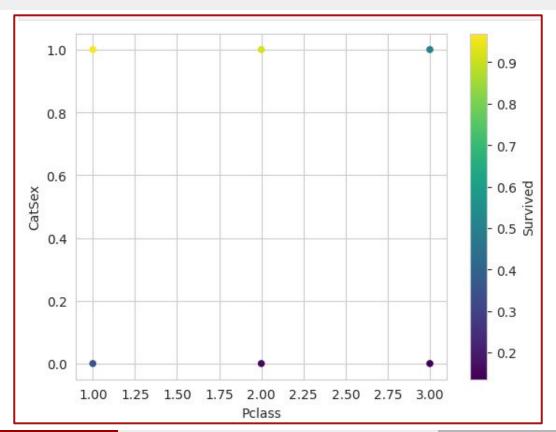
Look at charts produced by **13.6.3**, **13.6.4** and **13.6.5**.

Think about what these charts are conveying.

What chart is providing **most information** with regards to the **survival rate** of passengers?





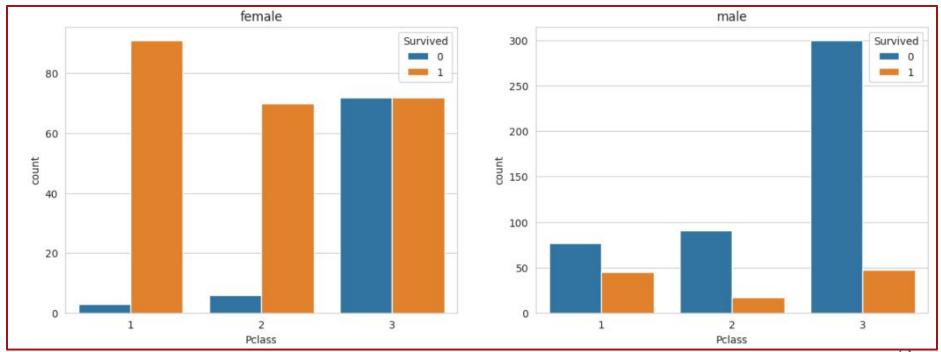


Is chart **13.6.5** providing us with enough information?

Let's dig deeper into the data.

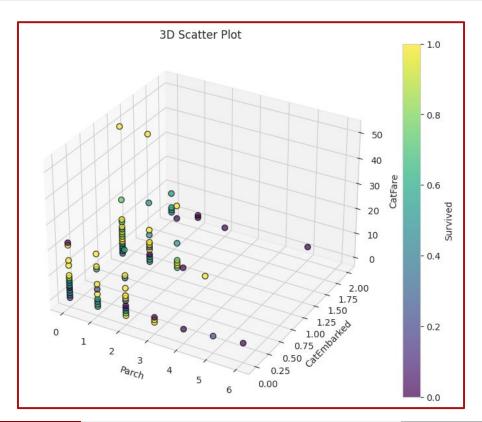
13.6.6

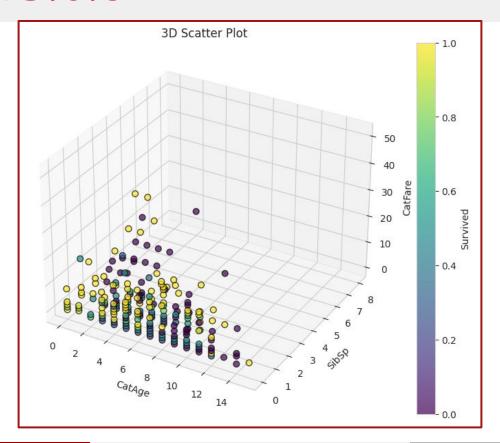
What is chart **13.6.6** showing us?



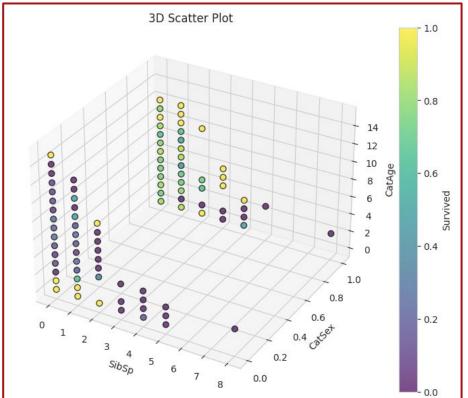
Look at charts produced by 13.6.7 and 13.6.8.

Do this charts provide meaningful correlation information? If not try to determine a set of 3 columns in **Exercise 13.6.9** that can be used to better classify the survival rate of passengers.





plot_3d("SibSp", "CatSex", "CatAge")



Quiz Time!

ahaslides.com/2ALVN

End of Class

See you all next week!

